Kinetic Stability of MOF-5 in Humid Environments: Impact of Powder Densification, Humidity Level, and Exposure Time.

نویسندگان

  • Yang Ming
  • Justin Purewal
  • Jun Yang
  • Chunchuan Xu
  • Rick Soltis
  • James Warner
  • Mike Veenstra
  • Manuela Gaab
  • Ulrich Müller
  • Donald J Siegel
چکیده

Metal-organic frameworks (MOFs) are an emerging class of microporous, crystalline materials with potential applications in the capture, storage, and separation of gases. Of the many known MOFs, MOF-5 has attracted considerable attention because of its ability to store gaseous fuels at low pressure with high densities. Nevertheless, MOF-5 and several other MOFs exhibit limited stability upon exposure to reactive species such as water. The present study quantifies the impact of humid air exposure on the properties of MOF-5 as a function of exposure time, humidity level, and morphology (i.e., powders vs pellets). Properties examined include hydrogen storage capacity, surface area, and crystallinity. Water adsorption/desorption isotherms are measured using a gravimetric technique; the first uptake exhibits a type V isotherm with a sudden increase in uptake at ∼50% relative humidity. For humidity levels below this threshold only minor degradation is observed for exposure times up to several hours, suggesting that MOF-5 is more stable than generally assumed under moderately humid conditions. In contrast, irreversible degradation occurs in a matter of minutes for exposures above the 50% threshold. Fourier transform infrared spectroscopy indicates that molecular and/or dissociated water is inserted into the skeletal framework after long exposure times. Densification into pellets can slow the degradation of MOF-5 significantly, and may present a pathway to enhance the stability of some MOFs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption.

Metal-organic frameworks (MOFs) in their free powder form have exhibited superior capacities for many gases when compared to other materials, due to their tailorable functionality and high surface areas. Specifically, the MOF HKUST-1 binds small Lewis bases, such as ammonia, with its coordinatively unsaturated copper sites. We describe here the use of HKUST-1 in mixed-matrix membranes (MMMs) pr...

متن کامل

Water Adsorption and Insertion in MOF‐5

The high surface areas and tunable properties of metal−organic frameworks (MOFs) make them attractive materials for applications in catalysis and the capture, storage, and separation of gases. Nevertheless, the limited stability of some MOFs under humid conditions remains a point of concern. Understanding the atomic-scale mechanisms associated with MOF hydrolysis will aid in the design of new c...

متن کامل

Increased volumetric hydrogen uptake of MOF-5 by powder densification

The metal-organic framework MOF-5 has attracted significant attention due to its ability to store large quantities of H2 by mass, up to 10 wt.% absolute at 70 bar and 77 K. On the other hand, sinceMOF-5 is typically obtained as a bulk powder, it exhibits a lowvolumetric density andpoor thermal conductivitydboth ofwhichareundesirable characteristics for ahydrogen storage material. Here we explor...

متن کامل

High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27.

Cu-MOF-74 (also known as Cu-CPO-27) was identified as a sorbent having one of the highest densities of Cu(ii) sites per unit volume. Given that Cu(ii) in the framework can be thermally activated to yield a five-coordinate Cu(ii) species, we identified this MOF as a potential candidate for maximal volumetric uptake of ammonia. To that end, the kinetic breakthrough of ammonia in Cu-MOF-74/Cu-CPO-...

متن کامل

Enhanced removal of methylene blue dye by bimetallic nano-sized MOF-5s

Metal-organic framework 5 (MOF-5) and bimetallic MOF-5s (Co/Zn and Ni/Zn) were prepared via a simple solvothermal method. Samples were characterized by various techniques such as powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), UV-Vis diffuse reflectance spectroscopy (DRS), inductively coupled plasma (ICP) and elemental analysis (EA). Photo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 31 17  شماره 

صفحات  -

تاریخ انتشار 2015